
N-Channel MOSFET AON2392 (KON2392)

■ Features

- V_{DS} = 100 V
- ID (at VGS = 10 V) = 8 A
- RDS(ON) (at VGS = 10 V) < 32 mΩ
- RDS(ON) (at VGS = 4.5 V) < $39 \text{ m}\Omega$

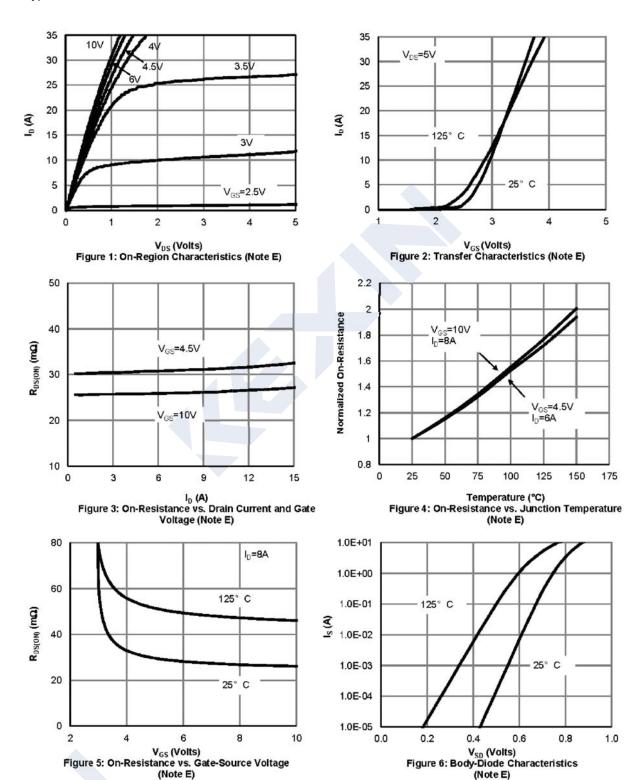
■ Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		VDS	100	V	
Gate-Source Voltage		Vgs	±20	V	
Continuous Drain Current	TA=25°C	- ID	8		
Continuous Drain Current	TA=70°C		6	Α	
Pulsed Drain Current ^C		IDМ	32	<u> </u>	
D D B	TA=25℃	PD	4.1	W	
Power Dissipation ^B	TA=70°C	PD	2.6		
Thermal Resistance.Junction- to-Ambient ^A	t ≤ 10s	RthJA	30	°C/W	
Thermal Resistance.Junction- to-Ambient AD	Steady-State	RthJA	55		
Junction Temperature		TJ	150	°C	
Storage Temperature Range		Tstg	-55 to 150		

N-Channel MOSFET AON2392 (KON2392)

■ Electrical Characteristics (T_J = 25°C unless othewise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	BVDSS	ID = 250 μA, VGS = 0V	100			V	
Zero Gate Voltage Drain Current	IDSS	Vps = 100 V, Vgs = 0 V			1		
		V _D S = 100 V, V _G S = 0 V, T _J = 55 °C			5	μA	
Gate to Source Leakage Current	Igss	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA	
Gate to Source Threshold Voltage	VGS(th)	V _{DS} = V _{GS} , I _D = 250μA	1.4		2.4	V	
Static Drain-Source On-Resistance	Rds(on)	Vgs = 10 V, ID = 8 A			32	mΩ	
		Vgs = 10 V, ID = 8 A, TJ = 125 ℃			57		
		Vgs = 4.5 V, ID = 6 A			39		
Forward Transconductance	gFS	VDS = 5 V, ID = 8 A		25		S	
Input Capacitance	Ciss			840		pF	
Output Capacitance	Coss	Vgs = 0 V, Vps = 50 V, f = 1 MHz		64			
Reverse Transfer Capacitance	Crss			4			
Gate Resistance	Rg	Vgs = 0 V, Vps = 0 V, f = 1 MHz		1.4		Ω	
Total Gate Charge	Qg(10V)			12.8	25	nC	
Total Gate Charge	Qg(4.5V)	Vez = 40V Vez = 50 V Iz = 0.4		6.1	12		
Gate Source Charge	Qgs	VGS = 10V, VDS = 50 V, ID = 8 A		2.1			
Gate Drain Charge	Qgd			1.8			
Output Charge	Qoss	Vgs=0V, Vps=50V		11			
Turn-On DelayTime	td(on)			7		ns	
Turn-On Rise Time	tr	V _{GS} = 10V, V _{DS} = 50 V, R _L = 5.85 Ω,		8			
Turn-Off DelayTime	td(off)	RGEN = 3 Ω		24			
Turn-Off Fall Time	tf	1		3			
Body Diode Reverse Recovery Time	trr	I= - 0 A - di/di - 500 A/		20			
Body Diode Reverse Recovery Charge	Qrr	IF = 8 A, di/dt = 500 A/µs		70		nC	
Maximum Body-Diode Continuous Current	Is				5	Α	
Diode Forward Voltage	VsD	VGS = 0 V, IS = 1 A			1	V	


Notes:

- A. The value of Reja is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with Ta=25°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation P_D is based on T_J(MAX)=150°C, using ≤10s junction-to-case thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature T_J(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C
- D. The Reja is the sum of the thermal impedance from junction to lead Rejl and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz Copper, assuming a maximum junction temperature of T_J(MAX)=150°C. The SOA curve provides a single pulse rating.

N-Channel MOSFET AON2392 (KON2392)

■ Typical Electrical and Thermal Characteristics

N-Channel MOSFET AON2392 (KON2392)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

N-Channel MOSFET AON2392 (KON2392)

Figure A: Gate Charge Test Circuit & Waveforms

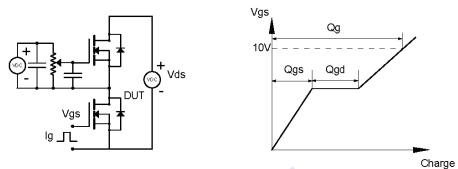


Figure B: Resistive Switching Test Circuit & Waveforms

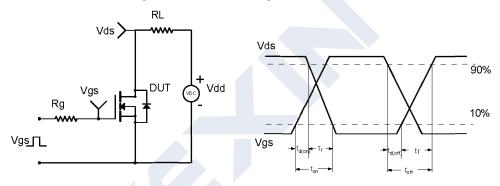


Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

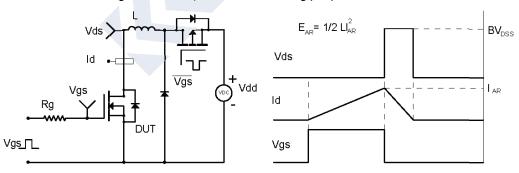
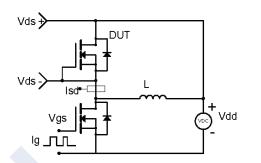
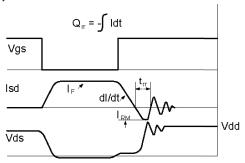




Figure D: Diode Recovery Test Circuit & Waveforms

